Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7093
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaulraj, Maheandera Prabuen_US
dc.contributor.authorSahu, Santosh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:27Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:27Z-
dc.date.issued2019-
dc.identifier.citationPaulraj, M. P., & Sahu, S. K. (2019). Conjugate heat transfer enhancement of laminar slot jets with various nanofluids on an array of protruding hot sources using MPM approach. Numerical Heat Transfer; Part A: Applications, 76(4), 232-253. doi:10.1080/10407782.2019.1627839en_US
dc.identifier.issn1040-7782-
dc.identifier.otherEID(2-s2.0-85067609662)-
dc.identifier.urihttps://doi.org/10.1080/10407782.2019.1627839-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7093-
dc.description.abstractConjugate heat transfer in laminar slot jets impinging on multiple protruding hot sources using various nanofluids has been investigated numerically by employing (i) a mass-based modeling and an (ii) Eulerian-based multi-phase modeling (MPM). Various parameters such as streamline contours, isotherm profiles, local Nusselt number (Nu), average Nusselt number (Nuavg) are evaluated for different nanofluids (Ag–water, Al2O3–water, CuO–water and TiO2–water), various range of Reynolds number (Re), particle volume fraction (ϕ), diameter of the nanoparticle (d) and thermal conductivity ratio (kr). The steady, laminar, incompressible and two-dimensional flows are considered for the analysis. Finite-volume method with SIMPLE algorithm is used to solve continuity, momentum and energy equations along with boundary conditions. The highest heat transfer rate is achieved at ϕ = 0.05 for any protruding blocks and Reynolds number. Conjugate heat transfer rate of nanofluids increases with decreasing the diameter of nanoparticles. Here, Al2O3–water nanofluid is found to exhibit highest average Nusselt number compared to other nanofluids. The mixture based MPM approach with considering slip velocity yields higher heat transfer rate compared to the results obtained by single phase modeling approach. © 2019, © 2019 Taylor & Francis Group, LLC.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.sourceNumerical Heat Transfer; Part A: Applicationsen_US
dc.subjectAluminaen_US
dc.subjectAluminum oxideen_US
dc.subjectCopper oxidesen_US
dc.subjectFinite volume methoden_US
dc.subjectNanoparticlesen_US
dc.subjectNusselt numberen_US
dc.subjectReynolds numberen_US
dc.subjectTiO2 nanoparticlesen_US
dc.subjectTitanium dioxideen_US
dc.subjectConjugate heat transferen_US
dc.subjectHeat transfer rateen_US
dc.subjectLocal Nusselt numberen_US
dc.subjectParticle volume fractionsen_US
dc.subjectSIMPLE algorithmen_US
dc.subjectSingle-phase modelen_US
dc.subjectThermal conductivity ratioen_US
dc.subjectTwo-dimensional flowen_US
dc.subjectNanofluidicsen_US
dc.titleConjugate heat transfer enhancement of laminar slot jets with various nanofluids on an array of protruding hot sources using MPM approachen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: