Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParey, Ananden_US
dc.contributor.authorSingh, Amandeepen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:31Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:31Z-
dc.date.issued2019-
dc.identifier.citationParey, A., & Singh, A. (2019). Gearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference system. Applied Acoustics, 147, 133-140. doi:10.1016/j.apacoust.2018.10.013en_US
dc.identifier.issn0003-682X-
dc.identifier.otherEID(2-s2.0-85055639734)-
dc.identifier.urihttps://doi.org/10.1016/j.apacoust.2018.10.013-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7110-
dc.description.abstractThis paper proposes a method of diagnosing faults in a single stage spur gearbox based on an analysis of acoustic signals acquired under various fault conditions. The time domain acoustic signals acquired from the gearbox are converted into a number of angular domain signals, each representing one revolution of the gearbox drive shaft. The resultant angular domain signals are averaged in order to improve the signal to noise ratio. The angular domain averaged signals thus obtained are decomposed using continuous wavelet transform. A range of optimal scales is then identified based on the energy-Shannon's entropy ratio of continuous wavelet coefficients. The wavelet amplitude maps pertaining to the various gear health conditions are segmented into 6 parts and continuous wavelet coefficients from optimal scales fed directly to the ANFIS in the form of data samples. The results demonstrate that acoustic signals and ANFIS can effectively be utilized to diagnose the condition of the gearbox. © 2018 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceApplied Acousticsen_US
dc.subjectAcoustic wavesen_US
dc.subjectDigital storageen_US
dc.subjectFailure analysisen_US
dc.subjectFault detectionen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy neural networksen_US
dc.subjectFuzzy systemsen_US
dc.subjectSignal analysisen_US
dc.subjectSignal to noise ratioen_US
dc.subjectSpur gearsen_US
dc.subjectTime domain analysisen_US
dc.subjectAcoustic signalsen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectContinuous waveleten_US
dc.subjectContinuous Wavelet Transformen_US
dc.subjectHealth conditionen_US
dc.subjectMethod of diagnosingen_US
dc.subjectOptimal scaleen_US
dc.subjectShannon's entropyen_US
dc.subjectWavelet transformsen_US
dc.titleGearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference systemen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: