Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKothari, Rohiten_US
dc.contributor.authorSahu, Santosh Kumaren_US
dc.contributor.authorKundalwal, Shaileshen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:33Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:33Z-
dc.date.issued2019-
dc.identifier.citationKothari, R., Sahu, S. K., & Kundalwal, S. I. (2019). Comprehensive analysis of melting and solidification of a phase change material in an annulus. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(3), 769-790. doi:10.1007/s00231-018-2453-9en_US
dc.identifier.issn0947-7411-
dc.identifier.otherEID(2-s2.0-85052680198)-
dc.identifier.urihttps://doi.org/10.1007/s00231-018-2453-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7116-
dc.description.abstractA one-dimensional conduction heat transfer model has been proposed to study the melting and solidification of phase change material (PCM) inside an annulus. Here, the phase change process is divided into two main sub-processes such as melting and solidification sub-process. Subsequently, each sub-process is analyzed for various temporal regimes. The temporal regimes include completely solid, partially molten and completely molten for melting sub-process and in reverse order for solidification sub-process. Later on, the solution for temperature distribution for each temporal regime is obtained either by employing Variational formulation or using a method of quasi-steady state. The solution of each temporal regime is united to provide a closed form solution for temperature distribution for the sub-process. Present model exhibits good agreement with the existing experimental data. The results indicate that melt duration can be increased by increasing the thickness of PCM in an annulus. It is also found observed that for any thermal storage unit there exists a particular percentage of TCE-PCM distribution through which maximum melt duration can be achieved. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceHeat and Mass Transfer/Waerme- und Stoffuebertragungen_US
dc.subjectDigital storageen_US
dc.subjectHeat conductionen_US
dc.subjectHeat storageen_US
dc.subjectPhase change materialsen_US
dc.subjectSolidificationen_US
dc.subjectTemperature distributionen_US
dc.subjectClosed form solutionsen_US
dc.subjectComprehensive analysisen_US
dc.subjectMelting and solidificationen_US
dc.subjectPhase change processen_US
dc.subjectQuasi-steady stateen_US
dc.subjectTemporal regimesen_US
dc.subjectThermal storage unitsen_US
dc.subjectVariational formulationen_US
dc.subjectMeltingen_US
dc.titleComprehensive analysis of melting and solidification of a phase change material in an annulusen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: