Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiva, S.en_US
dc.contributor.authorPalani, Anand Iyamperumalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:53:13Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:53:13Z-
dc.date.issued2016-
dc.identifier.citationShiva, S., Palani, I. A., Paul, C. P., Mishra, S. K., & Singh, B. (2016). Investigations on phase transformation and mechanical characteristics of laser additive manufactured TiNiCu shape memory alloy structures. Journal of Materials Processing Technology, 238, 142-151. doi:10.1016/j.jmatprotec.2016.07.012en_US
dc.identifier.issn0924-0136-
dc.identifier.otherEID(2-s2.0-84989920664)-
dc.identifier.urihttps://doi.org/10.1016/j.jmatprotec.2016.07.012-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7246-
dc.description.abstractThis paper reports laser additive manufacturing (LAM) of shape memory alloyed (SMA) structures using three premixed compositions of TiNiCu (Ti50Ni (50−x)Cux(x = 5,15 and 25)). A 2 kW fiber laser based additive manufacturing system was used. First, the processing parameters were optimized for defect free deposition, subsequently the optimized parameters were used for the LAM of the structures. These fabricated structures were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), X-ray diffraction (XRD), micro-hardness measurement and compression testing. SEM and AFM revealed the fine grain structures with good surface morphological characteristics (<5 μm Ra value) for TiNiCu5. The ultimate compressive strength, modulus of elasticity and micro-hardness values for this sample was 451 ± 15 MPa, modulus of 28 ± 2 GPa and 237 ± 12 VHN, respectively. XRD confirmed the presence of two phases austenite and martensite in the LAM samples and DSC demonstrated low hysteresis between 22 °C and 25 °C, a prime requirement of SMA. The study paved a way for LAM of complex shapes using TiNiCu with all the prerequisite properties of SMA. © 2016 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceJournal of Materials Processing Technologyen_US
dc.subject3D printersen_US
dc.subjectAtomic force microscopyen_US
dc.subjectCalorimetersen_US
dc.subjectCompression testingen_US
dc.subjectCompressive strengthen_US
dc.subjectDifferential scanning calorimetryen_US
dc.subjectElectron microscopyen_US
dc.subjectFiber lasersen_US
dc.subjectHardnessen_US
dc.subjectManufactureen_US
dc.subjectMicrohardnessen_US
dc.subjectShape memory effecten_US
dc.subjectX ray diffractionen_US
dc.subjectDifferential scanning calorimetersen_US
dc.subjectLaser additive manufacturingen_US
dc.subjectLaser-based additive manufacturingen_US
dc.subjectMechanical characteristicsen_US
dc.subjectMicrohardness measurementen_US
dc.subjectMorphological characteristicen_US
dc.subjectTiNiCu shape memory alloysen_US
dc.subjectUltimate compressive strengthen_US
dc.subjectScanning electron microscopyen_US
dc.subjectChemical Compositionen_US
dc.subjectSamplesen_US
dc.subjectScanning Electron Microscopyen_US
dc.titleInvestigations on phase transformation and mechanical characteristics of laser additive manufactured TiNiCu shape memory alloy structuresen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: