Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8439
Title: Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider
Authors: Roy, Ankhi
Sahoo, Raghunath
Issue Date: 2016
Publisher: Institute of Physics Publishing
Citation: Adam, J., Adamov, D., Aggarwal, M. M., Aglieri Rinella, G., Agnello, M., Agrawal, N., . . . Zyzak, M. (2016). Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN large hadron collider. Journal of Cosmology and Astroparticle Physics, 2016(1) doi:10.1088/1475-7516/2016/01/032
Abstract: ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρμ > 5.9 m-2. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events. © 2016 CERN for the benefit of the ALICE Collaboration.
URI: https://doi.org/10.1088/1475-7516/2016/01/032
https://dspace.iiti.ac.in/handle/123456789/8439
ISSN: 1475-7516
Type of Material: Journal Article
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: