Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9165
Title: Reversible C-H bond activation at a triosmium centre: A comparative study of the reactivity of unsaturated triosmium clusters Os3(CO)8(μ-dppm)(μ-H)2 and Os3(CO)8(μ-dppf)(μ-H)2 with activated alkynes
Authors: Mobin, Shaikh M.
Keywords: Aircraft windshields;Binary alloys;Chemical activation;Covalent bonds;Hydrides;Hydrocarbons;Iron compounds;Isomers;Ligands;Nuclear magnetic resonance spectroscopy;Organometallics;Toluene;Windshield wipers;Activated alkynes;C-C bonds;CH-bond activation;Diphosphines;Osmium cluster;Unsaturated compounds
Issue Date: 2017
Publisher: Elsevier B.V.
Citation: Chowdhury, M. A. H., Haque, M. R., Ghosh, S., Mobin, S. M., Tocher, D. A., Hogarth, G., . . . Roesky, H. W. (2017). Reversible C-H bond activation at a triosmium centre: A comparative study of the reactivity of unsaturated triosmium clusters Os3(CO)8(μ-dppm)(μ-H)2 and Os3(CO)8(μ-dppf)(μ-H)2 with activated alkynes. Journal of Organometallic Chemistry, 836-837, 68-80. doi:10.1016/j.jorganchem.2017.02.041
Abstract: Heating a benzene solution of the unsaturated cluster Os3(CO)8(μ-dppm)(μ-H)2 (1) [dppm = bis(diphenylphosphino)methane] with MeO2CC[tbnd]CCO2Me (DMAD) or EtO2CC[tbnd]CCO2Et (DEAD) at 80 °C furnished the dinuclear compounds Os2(CO)4(μ-dppm)(μ-η2;η1;к1-RO2CCCHCO2R)(μ-H) (3a, R = Me, 3b, R = Et) and the saturated trinuclear complexes Os3(CO)7(μ-dppm)(μ3-η2;η1;η1-RO2CCCCO2R)(μ-H)2 (4a, R = Me, 4b, R = Et). In contrast, similar reactions using unsaturated Os3(CO)8(μ-dppf)(μ-H)2 (2) [dppf = bis(diphenylphosphino)ferrocene] afforded only the trinuclear complexes Os3(CO)8(μ-dppf)(μ-η2;η1-RO2CCHCCO2R)(μ-H) (5a, R = Me; 5b, R = Et) and Os3(CO)7(μ-dppf)(μ3-η2;η1;η1-RO2CCCCO2R)(μ-H)2 (6a, R = Me; 6b, R = Et). Control experiments confirm that 5a and 5b decarbonylate at 80 °C to give 6a and 6b, respectively. Both 5a and 5b exist as a pair of isomers in solution, as demonstrated by 1H NMR and 31P{1H} NMR spectroscopy. DFT calculations on cluster 5a (as the dppf-Me4 derivative) indicate that the isomeric mixture derives from a torsional motion that promotes the conformational flipping of the cyclopentadienyl groups of the dppf-Me4 ligand relative to the metallic plane. VT NMR measurements on clusters 6a and 6b indicate that while the hydride ligand associated with the dppf-bridged Os-Os bond is nonfluxional at room temperature, the second hydride rapidly oscillates between the two non-dppf-bridged Os-Os edges. DFT examination of this hydride fluxionality confirms a “windshield wiper” motion for the labile hydride that gives rise to a time-average coupling of this hydride to both phosphorus centers of the dppf ligand. Thermolysis of 6a and 6b in refluxing toluene yielded Os3(CO)7(μ-dppf)(μ-η2;η1;к1-CCHCO2R) (7a, R=Me; 7b, R=Et). The vinylidene moieties in 7a and 7b derive from the carbon-carbon bond cleavage of coordinated alkyne ligands, and these two products exhibit high thermal stability in refluxing toluene. © 2017 Elsevier B.V.
URI: https://doi.org/10.1016/j.jorganchem.2017.02.041
https://dspace.iiti.ac.in/handle/123456789/9165
ISSN: 0022-328X
Type of Material: Journal Article
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: