Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/10232
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Maji, Bibekananda | - |
dc.contributor.author | Rani, Diksha | - |
dc.date.accessioned | 2022-06-09T05:45:41Z | - |
dc.date.available | 2022-06-09T05:45:41Z | - |
dc.date.issued | 2022-05-28 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/10232 | - |
dc.description.abstract | Let d(n) be the well-known divisor function. Using hyperbola method, Dirichlet, in 1849, proved that X nx d(n) = x log x + (2) with E(x) = O( px). After a long period of time, in 1904, Voronoi used the method of contour integration to improve the error term as O ⇣ x 1 3 +✏ ⌘ , for any positive ✏. Recently, Gupta and Maji studied a generalized form of d(n) given by Dk,r(n) := X dk|n ✓ n dk ◆r where k 2 N and r 2 Z. In this thesis, we study the summatory function of Dk,r(n) and establish a Voronoi-type bound for the error term. Moreover, we recover the Voronoi’s error bound for the summartory function of d(n) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mathematics, IIT Indore | en_US |
dc.relation.ispartofseries | MS289 | - |
dc.subject | Mathematics | en_US |
dc.title | Voronoi bound for a generalized divisor function | en_US |
dc.type | Thesis_M.Sc | en_US |
Appears in Collections: | Department of Mathematics_ETD |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MS_289_Diksha_Rani_2003141006.pdf | 1.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: