Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/12500
Title: | A refinement of a result of Andrews and Newman on the sum of minimal excludants |
Authors: | Eyyunni, Pramod Maji, Bibekananda |
Keywords: | Colored partitions;Minimal excludant;Partition congruences;Partitions;Refinement |
Issue Date: | 2023 |
Publisher: | Springer |
Citation: | Baruah, N. D., Bhoria, S. C., Eyyunni, P., & Maji, B. (2023). A refinement of a result of Andrews and Newman on the sum of minimal excludants. The Ramanujan Journal. https://doi.org/10.1007/s11139-023-00738-w |
Abstract: | In this article, we refine a result of Andrews and Newman, that is, the sum of minimal excludants over all the partitions of a number n equals the number of partitions of n into distinct parts with two colors. As a consequence, we find congruences modulo 4 and 8 for the functions appearing in this refinement. We also conjecture three further congruences for these functions. In addition, we also initiate the study of kth moments of minimal excludants. At the end, we also provide an alternate proof of a beautiful identity due to Hopkins, Sellers, and Stanton. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
URI: | https://doi.org/10.1007/s11139-023-00738-w https://dspace.iiti.ac.in/handle/123456789/12500 |
ISSN: | 1382-4090 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: