Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12937
Title: Voronoï bound for a generalized divisor function
Authors: Bansal, Diksha
Jaindungarwal, Anuvrat
Maji, Bibekananda
Keywords: Dirichlet divisor problem;Divisor function;generalized divisor function;Voronoï bound
Issue Date: 2023
Publisher: Springer
Citation: Bansal, D. R., Jaindungarwal, A., & Maji, B. (2023). Voronoï bound for a generalized divisor function. Proceedings of the Indian Academy of Sciences: Mathematical Sciences. Scopus. https://doi.org/10.1007/s12044-023-00754-2
Abstract: Using hyperbola method, Dirichlet, in 1849, proved that the error term in the study of the summatory function of the divisor function d(n) is O(x) . Then in 1904, Voronoï used the method of contour integration to improve the error term as O(x13+ϵ) , for any positive ϵ . Recently, Gupta and Maji (J. Math. Anal. Appl. 507 (2022) 125738) studied the following generalized divisor function: for any k∈ N, r∈ Z , Dk,r(n)=∑dk|n(ndk)r. In this paper, we obtain a Voronoï error bound for the summatory function of Dk,r(n) . © 2023, Indian Academy of Sciences.
URI: https://doi.org/10.1007/s12044-023-00754-2
https://dspace.iiti.ac.in/handle/123456789/12937
ISSN: 0253-4142
Type of Material: Journal Article
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: