Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/14139
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMaji, Bibekananda-
dc.contributor.authorGautam, Yashovardhan Singh-
dc.date.accessioned2024-08-10T06:05:45Z-
dc.date.available2024-08-10T06:05:45Z-
dc.date.issued2024-05-30-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/14139-
dc.description.abstractThis thesis investigates the properties of zeros associated with the Riemann zeta function ζ(s) and the Hurwitz zeta function ζ(s, a). The thesis builds upon the work of N. S. Koshliakov [11, Chapter 1, 3], analyzing the properties of ζp(s) and ηp(s) alongside their analytic continuations with the relationship between ζp(s) and ηp(s). The research then delves into explicit formulas for the summation of specific infinite series. A key contribution of this thesis is the identification of a zero-free region for ζp(s) within the right half-plane.en_US
dc.language.isoenen_US
dc.publisherDepartment of Mathematics, IIT Indoreen_US
dc.relation.ispartofseriesMS466;-
dc.subjectMathematicsen_US
dc.titleZeros of Koshliakov Zeta functionsen_US
dc.typeThesis_M.Scen_US
Appears in Collections:Department of Mathematics_ETD

Files in This Item:
File Description SizeFormat 
MS_466_Yashovardhan_Singh_Gautam_2203141008.pdf697.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: