Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6536
Title: On Cohen’s theorem for modules
Authors: Parkash, Anand
Issue Date: 2021
Publisher: Indian National Science Academy
Citation: Parkash, A., & Kour, S. (2021). On Cohen’s theorem for modules. Indian Journal of Pure and Applied Mathematics, 52(3), 869-871. doi:10.1007/s13226-021-00101-z
Abstract: In this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R-module, then M is Noetherian if and only if for every prime ideal P of R with Ann(M) ⊆ P, there exists a finitely generated submodule NP of M such that PM⊆ NP⊆ M(P). © 2021, The Indian National Science Academy.
URI: https://doi.org/10.1007/s13226-021-00101-z
https://dspace.iiti.ac.in/handle/123456789/6536
ISSN: 0019-5588
Type of Material: Journal Article
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: