Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6882
Title: | A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption |
Authors: | Kumar, Ritunesh |
Keywords: | Brain;College buildings;E-learning;Electric power utilization;Long short-term memory;Reinforcement learning;Building energy managements;Data driven;Data-driven methods;Data-driven model;Electricity consumption prediction;Electricity-consumption;Memory modeling;Performance degradation;Prediction accuracy;Reinforcement learning agent;Forecasting;building;energy use;learning;numerical model;prediction;reinforcement;residential energy;strategic approach |
Issue Date: | 2022 |
Publisher: | Elsevier Ltd |
Citation: | Zhou, X., Lin, W., Kumar, R., Cui, P., & Ma, Z. (2022). A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption. Applied Energy, 306 doi:10.1016/j.apenergy.2021.118078 |
Abstract: | Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management. © 2021 Elsevier Ltd |
URI: | https://doi.org/10.1016/j.apenergy.2021.118078 https://dspace.iiti.ac.in/handle/123456789/6882 |
ISSN: | 0306-2619 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Mechanical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: