Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7063
Title: Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique
Authors: Kundalwal, Shailesh
Issue Date: 2020
Publisher: De Gruyter Open Ltd
Citation: Kundalwal, S. I., & Rathi, A. (2020). Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique. Journal of the Mechanical Behavior of Materials, 29(1), 77-85. doi:10.1515/jmbm-2020-0008
Abstract: Carbon nanotube (CNT) acts as the most promising nanofiller due to its high aspect ratio and exceptional nanoscale-level properties. However, the dispersibility of CNTs in the conventional polymer matrices is a very critical issue in developing the high-strength and light-weight polymer-based nanocomposites. In this study, an attempt was made to develop cluster-free and uniform dispersion of multiwalled carbon nanotubes (MWCNTs) in the epoxy matrix using an innovative ultrasonic dual mixing technique. The effect of dispersion of MWCNTs on the mechanical and viscoelastic properties of MWCNT-epoxy nanocomposites was comprehensively studied. Our results reveal that the tensile strength and toughness of epoxy nanocomposites with 0.50 wt.% of MWCNTs improved by 21% and 46%, respectively, as compared to neat epoxy. The nanocomposite samples with the same CNT loading show maximum enhancements of 22% and 26% in the lap shear strength and storage modulus, respectively. The tensile fracture surface examination of MWCNT-epoxy nanocomposites using field emission scanning electron microscopy indicated the cluster-free and uniform dispersion of MWCNTs in the epoxy matrix. Open Access. © 2020 S. I. Kundalwal and A. Rathi, published by De Gruyter. Attribution 4.0 License This work is licensed under the Creative Commons
URI: https://doi.org/10.1515/jmbm-2020-0008
https://dspace.iiti.ac.in/handle/123456789/7063
ISSN: 0334-8938
Type of Material: Journal Article
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: